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LETTER 

DIFFERENTIAL EQUATION FOR 

IN AN INHOMOGENEOUS 
RELATIVISTIC ELECTRON LIQUID 

GROUND-STATE ELECTRON DENSITY 

N .  H. M A R C H *  

The theory of the inhomogeneous electron liquid is recast into the form of a differential 
equation for the ground-state electron density in the case of the relativistic treatment of 
heavy atoms. The way density gradients enter this self-consistent theory is the focal point. 

Ktywords: Relativistic electron liquid; Vallarta-Rosen theory 

1. INTRODUCTION 

A lot of attention has recently been focussing on  the role of electron 
density derivatives, such as V n  and V'n, with n the ground-state 
electron density - the central tool of density functional theory. The 
merit of introducing V n  is discussed, for example, in the work of 
Pearson et ul. [ I ] .  In the present study, the simplest relativistic 
generalization of density functional theory, namely the self-consistent 
relativistic Thomas-Fermi method [2], will be used to treat an 
inhomogeneous electron liquid. This will be exemplified with specific 
reference to the ground-state density in heavy atoms, previously 
explored numerically by Hill ef ul. [3,4]. 

~~ 
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Here attention will be devoted exclusively to the analytical proper- 
ties of this self-consistent relativistic Thomas-Fermi theory. The basic 
equation of this approach represents the chemical potential, constant 
throughout the entire inhomogeneous electronic cloud of the atom, as 
a sum of separate (spatially dependent) contributions from kinetic and 
potential energies. Thus, using the Special Relativity relation between 
momentum and kinetic energy for an electron at  the Fermi (F) level, 
one can write immediately (see, eg., ref [5]) 

p = [c’p$(r) + m;c4]1/2 - m0c2 + V(Y) (1) 
I 

where V ( r )  is the self-consistent potential energy to be determined. The 
Fermi momentum p F ( r )  is related to the ground-state electron density 
n(r) by simple phase space considerations: 

87r 3 n ( r )  = -p- ( r ) .  
3h3 

Using Eqn. (2) to eliminate pF(r) from Eqn. ( l ) ,  the chemical potential 
equation becomes 

(3) p = [ ~ c  2 TI 213 ( r )  + m;c4]1/2 ~ moc2 + V ( r )  

where B = ( 3 / 8 ~ ) ~ / ~ h ’ .  To Eqn. ( 3 ) ,  one must now add the explicit 
requirement of self-consistency: namely that V ( r )  is related to the 
ground-state electron density by Poisson’s equation of electrostatics: 

v2 v = 47rnr2 (4) 

Substituting for n(r) the solution from Eqn. ( 3 ) ,  one is accustomed to 
use the resulting equation for V in scaled form for the ‘screening 
function’ 4 defined as the ratio of V to the bare Coulomb potential 
energy -&’/I-, for an atom of atomic number Z .  In the work of Hill 
et al. [3,4], the resulting differential equation for 4 was solved 
numerically. 

Since, in the present approach, we are focussing on what can be 
learnt about relativistic density fuctional theory by exploring the 
Thomas-Fermi limit more fully, it is natural to substitute V(r)  from 
Eqn. (1) into the Poisson Eqn. (4). We turn to develop in this way the 
differential equation satisfied by the ground-state electron density n(r )  
of the relativistic TF atom. 
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2. DIFFERENTIAL EQUATION FOR GROUND-STATE 
ATOMIC DENSITY n(v) 

From Eqn. (3) we find straightforwardly for the derivative d V / d r  the 
result 

Forming 3'V/3r', and hence the Laplacian V' V ,  in the spherically 
symmetrical TF atom, one is led to the desired differential equation for 
the electron density n ( r ) :  

Taking the non-relativistic limit c -+ 00 in Eqn. (6) one recovers the 
earlier result of the present writer [6], namely 

where the length I is given in terms of the Bohr radius LIO = h2 /me2  by 

Let us turn immediately to use Eqn. (6), which essentially relates a 
'local' quantity k ( r )  to the 'reduced' density gradient terms V'n/n and 
(Vnin),  to construct a form for the functional derivative hT/hn( r ) ,  with 
T the total kinetic energy of the relativistic TF atom. 

3. FUNCTIONAL DERIVATIVE OF KINETIC ENERGY T WITH 
RESPECT TO ELECTRON DENSITY n(v) 

One can rewrite the chemical potential equation formally within den- 
sity functional theory (DFT)  as discussed, eg., by Parr and Yang [7]: 
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Comparing this Eqn. (9) with Eqn. (3) for the relativistic T F  atom then 
allows one to write for this case 

Since the differential Eqn. ( 6 )  for n(r) can be viewed alternatively as a 
quadratic equation to be solved for n2’3 in terms of the linear ( L )  
combination of reduced density gradients defined by 

2 

it is already clear that 6T/6n(r) takes the form for the relativistic T F  
atom: 

Below we construct the form of the function R(L).  Of course it must be 
clear that Eqns. (10) and (12) are equivalent expressions when 
combined with the differential Eqn. (6) for the self-consistent density 
n(r). In reaching the precise form of R(L) ,  it is worthwhile as a 
preliminary step to consider briefly this function in the non-relativistic 
limit c 4 co. Evidently, from Eqn. (10): 

= lim R(L)  = lim - 
c-w & ( r )  (‘-03 

6T B 2  
-nj. 
2mo 

When use is made of the non-relativistic Eqn. (7) in Eqn (13), one 
recovers the earlier result of the writer [6]  for the non-relativistic T F  
atom: 

showing that in this limit R(L) has a simple quadratic dependence on L 
defined in Eqn. (11). 
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3.1. Relativistic Form of Function R(L) in Eqn. (12) 

To proceed with the T F  relativistic atom, one can utilize Eqns (1 1 )  and 
(6) to write 

Substituting from Eqn. (1 5 )  for the square root term in Eqn (10) yields 
then 

To find nil3 to substitute in Eqn (16) let us next solve the quadratic Eqn 
(6) for n2I3 in terms of L. The desired solution is readily obtained as 

Using the positive square root of Eqn. ( 1  7) in Eqn. ( 1  6) one has the 
final result for the relativistic TF atom that 

More care is needed now than hitherto, at this point, in taking the 
limit of Eqn. (18) as c+m. However, when expanding the first root, 
provided one retains second-order terms, Eqn. (1  8) yields correctly 
Eqn. (14). 

4. SUMMARY AND CONCLUSION 

The main results of the present paper are (i) the differential Eqn. (6) 
satisfied by the ground-state electron density n(r) of the self-consistent 
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64 N .  H. MARCH 

relativistic T F  atom and (ii) the result Eqn. (18) for the functional 
derivative of the kinetic energy T with respect to n(r) in terms of the 
linear combination L of the density gradient quantities V2n/n  and (Vn/  
n)2 as defined in Eqn. (1 1). 

Of course, the relativistic TF theory, being statistical in character, 
will come into its own for sufficiently large numbers of electrons N .  
Thus, it is tempting to conjecture that for the range of N encountered 
in the Periodic Table: 

instead of the formally exact statement that bT/Sn(r) is a unique (but 
presently unknown!) functional of the electron density n. The function 
G introduced in Eqn. (19) must then evidently tend to R(L) in Eqn. 
(18) as given by the present study, in the limit of sufficiently large 
numbers of electrons N .  Should the generalization of the relativistic 
T F  atom form conjectured in Eqn. (19) prove a useful approximation 
for small and medium N encountered in the Periodic Table, that would 
considerably simplify, as discussed by Pearson et al. [ 11, current 
computational practices in DFT. But that is, of course, a matter that 
can only be settled by extensive future studies. 
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